Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The adsorption of ions to water-hydrophobe interfaces influences a wide range of phenomena, including chemical reaction rates, ion transport across biological membranes, and electrochemical and many catalytic processes; hence, developing a detailed understanding of the behavior of ions at water-hydrophobe interfaces is of central interest. Here, we characterize the adsorption of the chaotropic thiocyanate anion (SCN−) to two prototypical liquid hydrophobic surfaces, water-toluene and water-decane, by surface-sensitive nonlinear spectroscopy and compare the results against our previous studies of SCN−adsorption to the air-water interface. For these systems, we observe no spectral shift in the charge transfer to solvent spectrum of SCN−, and the Gibb’s free energies of adsorption for these three different interfaces all agree within error. We employed molecular dynamics simulations to develop a molecular-level understanding of the adsorption mechanism and found that the adsorption for SCN−to both water-toluene and water-decane interfaces is driven by an increase in entropy, with very little enthalpic contribution. This is a qualitatively different mechanism than reported for SCN−adsorption to the air-water and graphene-water interfaces, wherein a favorable enthalpy change was the main driving force, against an unfavorable entropy change.more » « less
An official website of the United States government
